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The U.S. Army Research Laboratory (ARL) is pursuing a major
research initiative in robotics. This research centers on collaborative
physical agents that have advanced sensing, analysis, and
behavioral characteristics that are linked to a mother ship that uses
advanced visualization and awareness tools. Applications that are
prompting this effort are reconnaissance, surveillance, and target
acquisition (RSTA) of both human and vehicle targets as well as
nuclear, biological, and chemical agent detection and localization.
This report focuses on the requirements of a robot, or rover, to
operate in urban terrain (such as military operations in urbanized
terrain (MOUT) facility), to autonomously and stealthily approach
enemy-controlled buildings, and to identify humans and any hazards
to them. The requirements for this scenario could be performed by
three increasingly complex systems, depending upon the extent of the
operation. The three proposed systems are an individual agent, a
team of collaborative agents, or a mother ship that works with a
team of collaborative agents. This report focuses on a single physical
agent solution. The agents must be able to negotiate all areas, such
as curbs, stairs, and rubble, within an urban terrain. This report also
discusses the application and component research thrusts of the

Abstract

RSTA module to detect humans and hazards to humans.
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1. Introduction
This report focuses on requirements of a robot to operate in urban terrain.
As discussed in the abstract, three proposed systems are being investi-
gated for the scenario, depending on the extent of the operation.  The first
minimal system, which is the current focus, uses a single physical agent,
or rover, that can be inserted into an urban setting to detect any human
activity or hazards and report them to an operator.  The second system
consists of several (currently targeted to be four) similar physical agents
that collaborate to clear individual buildings more quickly and efficiently
or to clear different buildings simultaneously.  An operator would also
control this system with a handheld control.  The agents can be sentries
for one another, are communication relays, or share gathered information
for multiple views of the same target.  The final system consists of a
manned mother ship, which deposits the four small robots near the area
of interest.  The mother ship will contain an advanced visualization
operator control station with terrain, weather, local perceptions, and other
team inputs.  These four robots, with embedded biological, chemical,
visible, infrared (IR), and acoustic sensors, will then perform an intelli-
gent individual and collaborative search.

This small urban rover must reliably detect hazards (to humans) and do
so with minimal unnecessary distraction (false alarms and unintelligible
data) to the robot operator. The urban rover reconnaissance, surveillance,
and target acquisition (RSTA) design must balance two conflicting con-
straints: having limited onboard sensing and processing resources and
maintaining minimal false alarms. To achieve this goal, we selected a two-
stage, multispectral sensing and processing approach. In the first stage,
acoustic and point IR sensor arrays, which have low weight, power,
volume, and requirements processing (with the acoustic array approach
described in sect. 4), will act as cueing and coarse direction-finding (DF)
devices. The acoustic array processing will additionally capture any
sound above a set threshold, as well as detect voices, for the human
operator.

The second sensing and processing stage uses IR and visible arrays and
image processing. This more complex and expensive stage is necessary to
keep the false alarm rate and subsequent communications and human
workload at an acceptable level. The contrast increase from an IR array as
compared to a visible array (either with natural light or strobed light)
significantly increases the probability of detection and reduces the false
alarm rate for automatic target detection. Another advantage of the IR
array is the capability for long-range viewing at night. A strobed ap-
proach can only provide adequate light at short range. This is acceptable
for navigation, but scenarios may exist in which being able to view at a
distance greater than 30 ft is necessary. Figure 1 shows an illustration of a
robot engaged in a mission.
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The following sections discuss in detail the algorithms and processing for
the RSTA. RSTA is also called perception for reconnaissance. The topics
discussed are a proposed default scenario, the point IR detection system,
acoustic detection, speech detection, IR imaging, image processing, and
moving object detection.

Figure 1. Illustration
of robot engaged in a
mission.
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2. Perception for Reconnaissance Scenario
A proposed default RSTA scenario (fig. 2) consists of the following steps
with the corresponding RSTA activities. In this report, we present a
default behavior. The operator has the ability to modifiy the sensing and
processing depending on the mission. The following steps correspond to
the locations in the floor plan shown in figure 3:

Step 1.

The rover traverses the outdoor terrain of the urban environment as it
moves toward the target building. During the traverse, the following
RSTA activities are occurring:

The acoustic array is continuously sensing to detect loud noises, gun-
shots, voices, or any other noises that might indicate human presence.
The array is not only sensing for noises but is also direction-finding to cue
the visible or IR imager to the direction of the noise source. It will also
transmit a 3-s audio clip to the operator when a voice is detected or when
commanded by the operator. Additionally, during the traverse, the point
IR sensor is used to sense whether or not an IR source has crossed the
beam. Either a moving person crossing the stationary vehicle, the moving
vehicle crossing a stationary person, or the moving vehicle crossing a
moving person can trigger the point IR sensor. If any of these cause an
alert, the visible imager or IR imager is cued to that direction and further
processing is initiated to determine if the image contains a human. Also,
the operator has the option of having a thumbnail image sent back to the
control unit. The acoustic array and point IR sensors are always on to cue
the other sensors.

Figure 2. Illustration
of robot in an
operational urban
scenario.



4

Because the IR imager takes so long to thermally stabilize, it is logically
used while the vehicle is in motion for additional detection. During the
traverse, the IR imager takes single-frame images and processes them by
using a person-detection algorithm. The person-detection algorithm
works while the robot is stationary or moving, and it views the image for
hot spots that resemble humans. The IR imager can take one snapshot
every few seconds or more often depending on the processor load. These
images will normally be taken in the direction of motion, except when the
IR imager is cued by other sensors.

Step 2.

When the rover approaches a threshold or opening, such as a doorway
(determined by the navigation perception module), it stops before the
opening and scans forward through the opening with either of the imag-
ing sensors (from both sides of the opening and straight into the opening)
and then turns around and scans in the opposite direction. The images are
processed with motion-detection or person-detection algorithms. If a
human is detected, the operator is alerted and a thumbnail image is
transmitted to the operator. The operator then analyzes the image of the
detected human to determine if it is friend or foe.

Also at the threshold, the rover will scan the opening for trip wires (in the
future). The proposed method is to roll the body to the left and right
while the scanning laser range finder is spinning. When the laser crosses
the trip wire, the corresponding image is detected by the APS camera.
Again, this is a topic of future research.

Step 2a.

The rover moves just inside the threshold. The rover scans the interior
with the imaging sensors and then processes the images for motion,
people, high-thermal contrast, windows, skylights, and doors. Upon
entering, the rover sends the processed image to the operator. As before,
the operator is alerted if any humans are detected.

Figure 3. Floor plan
of a building to be
searched
corresponding to
numbered steps in
RSTA scenario.
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Steps 3 and 7.

The rover moves about the room and scans for humans with the point IR,
acoustic, and IR imaging sensors. Also during this time, it is constructing
a map of the room with the laser range finder and stereo imagery.

Steps 4, 6, 8, and 10.

When the scan of the room is complete, the rover moves to another
threshold and repeats the procedures as before.

Steps 4a, 6a, 8a, and 10a.

The rover crosses the threshold and repeats the actions in step 2a.

Steps 5, 9, 11, and 13.

The rover traverses the hallway and operates as in step 1.

Step 12.

The rover approaches a threshold where humans have been detected. Just
as before, it scans forward through the opening (from both sides and
straight into the opening) with imaging sensors. Then the acoustic sensor,
the point IR sensor, or the IR imager cues the system. Once the cueing
occurs, the front of the rover is oriented toward the triggering source (if
not already pointed in that direction) and the images are processed with
the motion-detection and person-detection algorithms. The default mode
is for the rover to exit the room when humans are detected and return to
its last known safe position to report to the operator and await further
instructions. If no instructions are given, the default is for the rover to
continue searching the building as before. The operator has the option of
telling the rover to continue in rooms where humans are detected, move
away from the threshold and report, move on to the next room, or exit the
building expeditiously following the route in which it traveled.

Upon being cued, the rover is pointed toward the source and stops. If
enough light is available, the wide-angle visible cameras on each side of
the rover and the motion-detection algorithm are used to detect motion. If
the light is inadequate, the vehicle is pointed toward the source and the
IR imager is used along with the motion-detection algorithm. After the
motion-detection algorithm processes the IR image, the person-detection
algorithm is executed to verify the detection.

Steps 14 and 14a.

When the rover arrives at a flight of stairs (determined by the navigation
perception module), the rover looks up with imaging sensors and then
processes the image as in modes 2a and 4a. On each landing, it looks
forward and backward as in modes 2 and 4. The rover scans continuously
for trip wires. (For soldiers, stairwells are the most deadly areas within a
building. Therefore, careful clearing of the stairwells and the top of the
stairs is an essential task.)
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2.1 Summary of Basic Behavior Modes for RSTA

2.1.1 Move to Entry Point

The rover is continuously sensing (acoustic direction-finding, point IR,
and IR imager), cuing the imaging sensor and processor and sending the
image to the operator upon detection of voices, gunfire, loud noises, and
the corresponding direction of the source.

2.1.2 Cross Threshold

The rover is continuously sensing, detecting trip wires and scanning the
view with the imaging sensor into and away from the threshold.

2.1.3 Scanning Area (RSTA and Mapping)

The rover is continuously sensing, scanning the area when directed by
mapping software and scanning the area upon operator request.

2.2 Summary of RSTA Processing in Scenario

Table 1 reflects the sensor use for all the RSTA functions.

2.3 Summary of Events to Be Detected

The algorithms and sensors have been designed to detect humans who
are standing in a room, by a window, or at the top of a stairway; walking
down a hallway or in a room; talking in a room (two people); sitting in a
chair; and lying down. Other events that will be detected include gun-
shots, loud noises, windows, trip wires, and vehicles.

Table 1. RSTA processing in scenario.

Sensor Algorithm Vehicle status Method

IR imager Person-detection Stationary or moving Uses a single frame to detect
hot spots that resemble humans

IR imager or Motion-detection Stationary Uses a few seconds of images
visible camera to detect motion

Acoustic array Simple-detection, Stationary or moving Uses directional microphone
used for cueing arrays to determine direction

and processes the data in the
frequency domain to detect
human speech

Point IR Simple-detection Stationary or moving Uses directional point IR to
used for cueing determine if hot source crosses

the beam
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3. Point IR Detection and Cueing System
The cueing system must search for human presence in its vicinity and
produce a signal and a pointing direction for the more advanced and
complex image processing. This signal will allow the robot to pause, train
the IR imager in the proper direction, and switch into its “stationary
detection” mode. (In the stationary detection mode, the robot is not
moving, so the problems of platform motion and self-noise are mini-
mized. The image and acoustic processing systems can use more efficient
and accurate algorithms and temporarily grab the central processing unit
(CPU) share momentarily relinquished by the navigation and mapping
tasks.) If detection is confirmed, the operator is alerted; otherwise, the
current task resumes after a 3-s search.

A cueing system is needed that can operate while the robot is moving or
stationary, indoors or out; that can provide 360° coverage; and that can
provide a minimal processing burden to the CPU. It must have a high
probability of detection and an acceptable false alarm rate. Since the
operator is not necessarily aware of the alarms from the cueing system,
the primary consideration is to not slow down the execution of the
mission.

3.1 Trade Space

The acoustic system provides some cueing but will not detect people who
remain quiet. Ultrasonic sensors are limited in range and have degraded
performance outdoors.

We evaluated a microwave motion sensor: MICROGUARD CS-95—a car
alarm. During testing, it showed some attractive features, including a
limited capability to detect motion around corners and behind objects. We
ultimately dropped it, because no apparent way existed to adapt the
sensor to operate from a moving platform.

3.2 Design Solution: Pyroelectric Single-Element IR
Sensors

Our proposed solution is to create a sensor by using an array of four
pyroelectric detectors. The design of the sensor is based heavily on the
pursuit deterrent munition-trainer (PDM-T), a training device developed
by the U.S. Army Research Laboratory (ARL).

The PDM-T (fig. 4) is designed to simulate a smart munition (mine). It sits
on the ground and uses an array of four pyroelectric detectors to auto-
matically trigger when a person walks past it. Although the PDM-T
involves special-purpose hardware and packaging, some of the hardware
and most of the algorithms are directly applicable to the robotic project.
The PDM-T is described in some detail in the background section that
follows.
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The PDM-T’s detection algorithm can be applied with little or no change
to the stationary or moving robot case. The rover will be moving at
walking speed (about 1 m/s). The signature produced is much the same
whether the person moves past a pyroelectric detector or the detector
moves past the person.

The PDM-T was designed to operate in an outdoor environment while
remaining still. Further, it was designed to mimic the probabilities of
detection and false alarm of an actual mine. We conducted some informal,
qualitative tests using a radio-controlled (RC) car to explore how placing
the sensor on a moving indoor platform would affect its behavior.

We used two specially built test fixtures, closely modeled on the PDM-T.
These fixtures are self-contained and allow testing of different parameter
settings. For this system, the pyroelectric detectors would be sampled by
an I/O board and the software would run on the rover’s CPU. Each
detector is sampled at only 10 Hz, so the processing burden involved is
minimal. The four detectors were placed on the RC car in the configura-
tion intended for the rover: one in front, one in back, and one on each
side. The front and back detectors were intended to detect people crossing
the path of the vehicle while the side detectors acted as hot spot detectors,
searching for moving or stationary people whom the rover passed.

We tested the fixtures by driving the RC car through laboratory bays,
offices, and hallways at the ARL facility. We followed with a handheld
imaging IR sensor to visually examine the areas tested. The evaluation
conducted was entirely subjective.

The false alarm rate was surprisingly low. When false alarms did occur,
the IR imager usually confirmed that a real hot spot was present. These
hot spots were caused by coffee pots, lamps, heating vents, and similar
objects. Discrimination between humans and coffee pots is a higher level
function that must be accomplished using the rover’s IR imager or acous-
tic sensor.

Figure 4. Pursuit
deterrent munition-
trainer.
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The detection performance was uneven. Depending on the clothes a
person wore as well as many other factors, some people had bright (hot)
signatures and others had more muted signatures. People who had bright
IR signatures were reliably detected up to about 15 ft or so, while their
cooler (more fully clothed) peers were not.

The detection performance can be improved by using more efficient
lenses and possibly by tilting the detectors upward so that they can scan
the peoples’ faces and hands. A simpler approach is to lower the thresh-
olds in the detection algorithm and trade off a higher false alarm rate
(which we can afford in a cueing system) for a higher detection rate.

3.3 Background

The PDM-T is a training device, developed at ARL in the early 1990s, that
simulates the Army standard pursuit deterrent munition (PDM). This
effort demonstrated an alternate target sensing technology (single-point
IR) that could be applicable to future versions of the actual PDM, other
trip-line function weapons, or scenarios requiring simple object detection.
The detection and fire capability of the actual PDM are provided by trip
lines that are ejected after an arming delay. The PDM-T uses four single-
point IR sensors to simulate the trip-line function. These sensors allow
easy reuse of the device, since trip-line triggering in a trainer would make
each unit a single-use device. The IR sensors used are the Heiman Lhi954,
which are sensitive in the 6- to 14-µm wavelength region and are ideal for
human detection. Fresnel lenses were used to focus the IR in this region
onto the detector surface. The PDM-T output signals from the IR sensors
are paired, amplified, and filtered, resulting in two channels of low-
frequency analog data. These signals are digitized and then processed by
a target recognition algorithm. Upon detection of a valid target, the
PDM-T produces both visual and audible cues to alert the soldier. The
audio output is used to communicate with the soldier wearing MILES
(Multiple Integrated Laser Engagement System) gear, which registers the
kills produced by various training simulators.

The target recognition algorithm determines if a valid target is within the
specified range and rejects most nontarget IR sources. By continually
adjusting detection thresholds for ambient conditions and comparing
input signal characteristics with those that are typically expected from
known targets, the point IR array can achieve a good probability of
detection and a low false alarm rate. The process begins when the device
is activated, which begins a 1-min delay before the arming period. During
this delay, the analog section is stabilized and the ambient IR conditions
are registered and stored in memory. These values are updated continu-
ously as conditions change. Detection thresholds are set lower during low
noise ambient conditions and higher for noisy environments, such as
those found during windy or rapidly changing temperature conditions.
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This is a trade-off resulting in a somewhat reduced range in exchange for
better false alarm rejection under such noisy conditions, while retaining
the full detection range during quiet periods.

After the device adjusts for the environmental conditions, target identifi-
cation and detection are then accomplished by looking for a specific type
of change to the sensed IR conditions to occur.  The known target signal
profiles were obtained from extensive data collection of signals captured
when a human subject passed through the zone of detection of the IR
sensor. The scenarios used for this data collection included various
walking speeds, clothing density of the subject, and sensor orientation in
both indoor and outdoor environments. From this data, we obtained truly
representative signal characteristics. This information was used as the
basis for the signal comparisons used during the target detection process.
The sampling rate for the analog data is 8 Hz, which is adequate consider-
ing that the signals from the detection process are in the 1-Hz range. The
conversion, processing, and output signaling are performed using an 8-bit
microcontroller unit (MCU) from the Motorola M68HC05 family. The P9
version of this MCU was used, which contains onboard A/D conversion,
2112 bytes of ROM, and an ultralow power sleep mode.

Technical testing of the PDM-T was performed by Test and Evaluation
Command’s (TECOM’s) Electronic Proving Ground at Ft Huachuca. The
results are summarized in test report EPG-TR-14-96. The performance of
the IR detection was found to be quite good, with most criteria met or
exceeded. The probability of detection for ranges from 0 to 5 ft and 6 to
10␣ ft were tested to be 97.4 and 96.8 percent, respectively. This test was
performed on each sensor separately, with the other three sensors cov-
ered. Another performance assessment showed the absolute range of the
PDM-T was from 6 to 23 ft, depending primarily on device orientation.
When the sensor was aimed toward the center body mass of the target,
increased range was recorded. In only 3 of the 56 trials of this test did the
range fall below the expected value of 10 ft. This occurred when the
sensor was aimed straight along ground level rather than aimed up
toward the target. The other tests performed included safety, environmen-
tal, reliability, and human factors engineering. Most of the criteria for
these tests were met and were related specifically on how the PDM-T
behaved as a training device.
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4. Detection of Suspended Trip Wires
To help reduce the risk to both military and civilian personnel, ARL is
developing a class of robotics (both autonomous and remotely controlled)
designed for use in various hazardous environments. One of the tasks
that researchers would like the rover to perform is to seek and identify
trip wires set in critical pathways that soldiers may encounter during
missions.

4.1 Trade Space

4.1.1 Passive Detection

The natural illumination method for detecting suspended trip wires
(favored among most robotic scientists, since it is the simplest to imple-
ment) involves applying various pattern recognition algorithms (PRA) to
transmitted video imagery from visible cameras mounted on the robot.
These PRAs are designed to “key on” and identify any “fine-line” struc-
tures that are present in the video scene. Unfortunately, this approach
must overcome two fundamental problems. First, images of naturally
illuminated three-dimensional (3-D) scenes do not convey the type of
information necessary for PRAs to accurately distinguish between com-
mon straight edges (e.g., a sharp edge of a tabletop) and suspended wires.
As a result, the false alarm rate is often quite high for all but the most
simple of scenes. Second, by their very nature, trip wires are designed to
blend into their backgrounds and thus often do not exhibit the necessary
contrast needed for PRAs to key on. While the human handling involved
in placing a trip wire produces a warming effect detectable in the IR, this
signature is short-lived. Experiments using 3- to 5- and 8- to 12-µm IR
imagers show little prospect of obtaining a reliable means of
discrimination.

4.1.2 Active Detection

Active illumination methods (sometimes termed 3-D laser imaging/
Doppler) use a pulsed laser to illuminate an extended target by optically
scanning a two-dimensional (2-D) area. Coincident sensors are then used
to record the position and time delay in the scattered signal. A pseudo-
image is generated that gives rough dimensions and distance to the
illuminated object. These systems are complex and expensive to deploy.
Furthermore, this technique is only effective in identifying targets that
have reasonably large extended areas and is inefficient in identifying
objects that possess small geometric cross sections, such as what is en-
countered with hanging wires or cables. Both passive and active tech-
niques as outlined above are deficient in their approach because they cue
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on features that are not entirely unique to the target of interest, i.e., trip
wires and/or cables.

4.2 Solution: Use Laser Scanner and APS Camera

ARL’s wire detection technique can be adapted to use the same sensors
and image processing hardware already part of other systems on the
robot. The wire detection technique (described in the background section
that follows) uses a stationary camera and a laser that is rapidly scanned
around its horizontal axis and slowly scanned vertically. The rover’s
navigation system includes a laser scanner and an APS camera that is
sensitive to the laser’s emitted light. The laser scanner rotates at a high
rate in the horizontal axis. The actuators on the legs can easily produce
the required, slow, side-to-side, rolling motion in the second axis. One of
the APS cameras, which is offset about 1 in. from the axis of the laser
scanner, can image the laser spot. (The 1-in. separation produces a paral-
lax at 1 ft of 4.76°, and a parallax at 2 ft of 2.38°, which are easily resolved
by the camera.)

Since the camera and laser scanner are both fixed to the robot’s body, the
rolling motion of the robot rotates the scanner and the camera. To sim-
plify the image processing, the rolling motion is broken up into discrete
steps and two images are captured at each step: one with the scanner on
and one with the scanner off. Subtracting the two images produces a
resultant image, highlighting the reflection of the laser scanner. This
reflection sometimes includes an extended line that the laser scanner
reflects from a distant object(s) (typically a wall). Any reflection from a
suspended wire would be limited to a point and be offset from any other
reflections by the parallax effect. The reflected points from a wire, at each
rotation angle, would fall on a straight line in the coordinate frame of the
camera.

4.3 Background

The reliable detection of trip wires has been a problem that has plagued
the military research community for some time. Military and law enforce-
ment agencies currently do not have an effective way of detecting simple
trip wires. This problem is exacerbated during combat situations in which
meticulous inspection of one’s pathway is often not possible. Civilian law
enforcement groups, such as the Drug Enforcement Agency (DEA), have
reported an increase in so-called “booby-trapped” incidents involving
their agents. Often when an illegal crop is identified, DEA personnel are
placed at great risk during the secure phase of an operation in which
booby traps are searched out and disarmed.

A similar problem involves the detection and early warning of power
lines and hanging cables during certain helicopter missions. A particu-
larly troublesome situation encountered by military pilots involves urban



13

night missions in which the probability of a helicopter colliding with a
power cable or wire is greatly increased.

As mentioned before, ARL has developed a technique to automatically
detect suspended wires by rapidly scanning a laser beam across a volume
of space while examining that space with a video camera. Figures 5 to 8
show a series of generic schematics that outline the primary components.
The schematics do not represent the only possible configurations.

We found three scan patterns that are uniquely suited for the illumination
of suspended wires. The patterns were named to reflect the geometry of
the resulting illumination: “bow tie,” “wiper,” and “perpendicular
translation.”

Acquiring each pattern starts with a common element consisting of a fine
line of bright illumination that is created by reflecting an intense point
source (in our case, HeNe, 0.6-µm laser) off a rapidly oscillating mirror;
see figure 5. The oscillatory rate ω must be sufficient to produce what
“appears” to be a continuous line of intense illumination. We found rates
over 60 Hz to be adequate for video capture.

The next step is to alter the position of the “line illumination” in a time-
dependent manner so that one of three possible scan patterns is created.
Figures 6, 7, and 8 outline the mirror movement necessary to produce
either the bow-tie, wiper, or perpendicular translation patterns, respec-
tively. In each case, a much slower oscillatory frequency, ωslow (i.e., ωslow
< 1 Hz), is imposed around one axis of the oscillating mirror. This slow
precession produces an extremely bright line of illumination. When
projected on a plane surface, this line appears to pivot around the center
point (bow tie), to pivot around one of the end points (wiper), or to
translate a skewed line of illumination (relative to the wire being de-
tected) in an up-and-down fashion (perpendicular translation). In figure
8, θ denotes the roll angles. One scan may have an advantage over an-
other, depending on the specific application, but all three are designed to
produce the same effect.

When a suspended wire or cable is in the illumination field of any of the
three scan patterns, a bright “point” spot will result because of the light
scattering off the wire at the intersection of the illumination line and the
wire of interest. At some time, ∆t, later, the point of intersection will have
transversed a distance, d(ωslow), along the wire; reached an end point; and
returned in the opposite direction along the same wire (see fig. 5). This
type of illumination results in a distinct and unique pattern that is best
described as a linearly moving point source that retraces its path in a
slow, repetitive, oscillatory manner. Attempts to mimic this pattern using
extended edges and geometries (i.e., table tops, chairs, metallic trim, etc)
have shown it to be unique to suspended wires and cables.
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Figure 5. Line
illumination raster
scan pattern.

Figure 6. Bow-tie
illumination raster
scan pattern.

Figure 7. Wiper
illumination raster
scan pattern.
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To best capture the resulting image for pattern recognition post-
processing, a recording camera is slightly offset so that its field of view
captures the linearly moving point reflection when a trip wire is encoun-
tered. Through the parallax effect, this point reflection is offset because of
the reflection from a more distant extended object, such as a wall.

Laser

ω

θ

θ

ωslow

ωslow

Figure 8. Perpendicular
translation illumination
raster scan pattern.



16

5. Acoustic Detection From an Autonomous Vehicle
The inclusion of acoustic sensors on an autonomous vehicle will add a
new dimension to situational awareness and will augment and validate
data collected from a vision detection system. Acoustics is a non-line-of-
sight technology, which permits detections around corners, behind walls,
or through obscurants. Signatures of interest include speech, walking,
activity, weapon noises, number of people, TV, radios, and telephones.
Automated detection algorithms of acoustic events can be further aug-
mented by human auscultation.

5.1 Trade Space

Typical operational environments, which have reflective walls and floors,
absorptive ceilings, hallways, doors, rooms, ventilation systems, and
carpeting on walls or floors, can be acoustically challenging. Huge
multipath reverberance can quickly become highly absorptive anechoic
areas, confounding detections or localizations. Long corridors or hallways
can channel sounds from great distances, which is good for detection, but
bad for localization. Speech transmission through walls or doors can be
beneficial, but may also limit or confuse.

Collecting acoustic data from moving platforms has always been a
challenge:

• Motion induces vibrations of the microphone diaphragms.

• Structure-borne resonances and vibrations mechanically couple to the
sensor through microphone mounting.

• Wind noise and turbulence can saturate high-gain amplifiers.

• Actual acoustic emanations from electromechanical mechanisms on the
moving vehicle all contribute to the high dynamic noise.

This noisy condition is further compounded by hemispherical propaga-
tion of self-noise; radiated sound spreads in all directions, but the down-
ward traveling sounds are again reflected upward from the nearly perfect
reflective floor surface, effectively doubling the sound level from vehicle
noise. To further complicate the signal-to-noise-ratio (SNR) problem,
sounds occurring near microphones have a much greater effect than the
same amplitude sounds emanating from farther away. Since atmospheric
absorption in the spectrum of interest is negligible over relatively short
distances, spherical spreading attenuates the signal 6 dB per doubling of
distance. This essentially means that a small sound occurring near the
microphones will be transduced as equal to a significantly louder sound
occurring much farther away; hence, the “near-far” issue of self-noise and
distant voice.
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To improve the SNR of speech over vehicle, it is necessary to quiet the
vehicle or create directional beams that are less sensitive to the vehicle
noise. Quieting the vehicle can be accomplished by mechanical methods,
such as acoustic insulation, damping, gear noise reduction, smoother
tires, better shocks, or other methods that usually add weight and bulk to
the vehicle. A more effective solution is to create highly focused zones of
listening that are intentionally shaped to exclude the primary noise
components of the vehicle. A more specific solution is four-directional
microphone arrays. Directivity can be accomplished through the use of
directional microphones or by the proper inphase combination of mul-
tiple microphones to form an array with maximum sensitivity in the
phase-steered direction. A single omnidirectional microphone “hears”
equally well in all directions. A single unidirectional microphone, such as
a cardioid, has some sound reception preference in both the azimuth and
elevation directions and rejects sounds approaching from the rear. An
array of unidirectional microphones consists of several microphones
usually arranged in a line of equal spacing, and the individual micro-
phone outputs are summed simultaneously to produce a broadside
directivity pattern with maximum sensitivity normal to the line. Only
planar sound waves that approach the front of the array and hit all micro-
phones simultaneously are constructively added inphase. Off-axis
sounds, which do not traverse the array in a preferred perpendicular
direction, are summed destructively producing phased cancellation and
attenuation. Adding a second dimension to the line array, thereby creat-
ing a “planar” array, can further help reduce off-axis sounds propagating
in the elevation direction as well as azimuth.

Having such a broadside array on the side of a vehicle will help eliminate
sounds from the other three quadrant directions, as well as determine
from which side of the hallway the speech is coming. The narrower the
beam and the better the rearward sound suppression, the more likely the
vehicle is to detect and locate speech in the direction normal to the array.
Obviously, front, left, and right arrays can be compared to relate between
signal strengths, frequency content differences, and time of arrivals to the
location of targets. Combination of the arrays can create other beam
patterns that might bisect the primary quadrants, such as left-front or
right-front. Another option, not evaluated at this stage of development, is
to use several omnidirectional microphones in a volumetric (3-D) array,
and continuously steer or scan the beam in all or preferred directions by
varying the phase delays between the microphones. (Sound speed, sensor
separation, and steered angle determine the appropriate delays.) Noise
cancellation techniques can be used by using a reference microphone near
vehicle noise sources, which will become the reference standard by which
noise and signal can be compared and separated.

Shown in figure 9 is the schematic and photograph of a Knowles EL-3077
bidirectional microphone with tube extensions. By the addition of
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appropriate␣ tube lengths to the front and back ports, a true cardioid
pattern can be attained, of which its polar response is 1/2(1 + cos θ).
Also in the photograph above the Knowles microphone is a Bruel and
Kjaer (B&K) 1/2-in. 4147 microphone, an instrumentation grade omnidi-
rectional microphone used as the reference for the array directivity
measurements.

Because the effectiveness of the array relies upon the proper phase combi-
nation of multiple signals, it is imperative that the microphones chosen be
properly matched to have similar phase and amplitude responses. B&K
microphones have exceptionally flat amplitude and phase responses, but
are prohibitively expensive and fragile. Using lesser quality microphones
with nonlinear responses is common practice as long as each microphone
responds in the same way. An assortment of Knowles microphones was
tested to evaluate repeatability. The normalized frequency response is
shown in figure 10, with the vertical axis representing decibel-volt differ-
ences between microphone outputs immersed in the same sound field.
The normalized phase diagram in figure 11 has vertical units of degrees.
The horizontal axis represents frequency in hertz. Twenty-one micro-
phones are shown.

Ideally, but unlikely, all the microphones would have the same shape and
the above curves would overlay themselves perfectly. To optimize simi-
larity between available microphones, we chose three groups of the
closest five microphone groupings for the three arrays, attempting to use
both phase and amplitude response as grouping parameters.

The photograph in figure 12 shows a broadside cardioid array with each
of the five elements 1 in. apart and the B&K reference suspended above
the array fixture. We mounted the entire array fixture on a computer-
controlled rotating table within an acoustic anechoic chamber. Data
acquisition and table orientation were controlled with LabView software,
and digitally sampled waveforms stored for postprocessing by LabView
as well. By simultaneously exposing the array and reference microphone
to high-amplitude broadband noise created by a distant speaker also in
the chamber, we could fully characterize microphone response and
directional response as the table was rotated.

Figure 9. A
bidirectional
microphone
schematic and
photograph of
Knowles and B&K
microphones.

Effective port spacing
Rear microphone port

Rear extension tubing

Time delay acoustical network

Diaphragm

Front microphone port

Front extension tubing
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Figure 10. Amplitude
differences.

Figure 11. Phase
differences.

Figure 12. Five-
element directional
array.

By performing fast Fourier transforms (FFTs) on both the incrementally
rotated array and the stationary reference microphone, we found that the
resulting transfer function between the two sensors indicates the direc-
tional response of the array as it turns away from the sound source
located at 0° azimuth. Figure 13 shows directivity representations of a
single EL-3077 microphone without extensions, the same microphone
with tube extensions to create a cardioid, and (as previously mentioned) a
five-element array of cardioid microphones spaced 1 in. apart.
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The vertical axes in the graphics in figure 13 represent frequency of
interest in hertz, and the horizontal axes are the array’s rotation orienta-
tion in degrees azimuth, showing the center (0°) pointing at the speaker
and normalized to an arbitrary sound pressure level of 60 dB. As the
array is turned ±180° from the center, the resulting amounts of attenua-
tion are determined by the color bar. Ideally, the present goal would be
to create as narrow a beam as possible, with the greatest rearward
attenuation.

To better understand the plots (fig. 13), one can take a 2-D “cut” at
2100␣ Hz, and graph it in polar coordinate fashion, where the
microphone’s forward direction (0°) is oriented toward the right side of
the graph, and where the radial divisions represent 10-dB attenuation.
Figure 14 (a) is not very directional at that particular frequency; whereas,
figure 14 (b) indicates better rearward attenuation, but an extremely
broad beam (gradual rounding). The plot in figure 14 (c) shows a slightly
elevated rear lobe, but excellent rearward reduction and narrower frontal
beamwidth (sharp roll-off). The larger rear lobe results from the
microphone’s separation being related to a fraction of that frequency’s
wavelength, creating suboptimal cancellation.

We should also like to mention that the microphones must be mounted so
that the acoustic wave fronts traverse the array without being disturbed,
from whatever direction they occur, so that the cardioids and the array
can properly perform the direction-dependent enhancement or
cancellation.

We conducted some preliminary experiments using data collected with a
modified hobbyist’s RC car. The RC car is extremely noisy when running
and represents a signal-to-noise problem greatly over any acoustic level
projected for the robot (based on acoustic measurements of some subcom-
ponents). While much of these data represent something of a pathological
case (one cannot really imagine this RC car in a stealthy mode), the data
still provide insight into the problem.

Figure 13. Polar and Cartesian directivity curves from density plots (a) microphone only, (b) single
microphone with plastic tubes, and (c) array with plastic tubes.
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We mounted three acoustic arrays on the three upper edges of an open-
ended box and secured noise-deadening leaded foam atop the vehicle.
The engine compartment also contained some foam; however, little was
done to quiet the vehicle. The vehicle was tested in a typical laboratory
hallway, which contained many laboratory bays and offices, two of which
had people reading a script during the vehicle’s run. Shown in figure 15 is
a time-series plot and the resulting time-frequency spectrogram of data
taken from the Sony digital audio tape (DAT) recorders located on the
vehicle beneath the array. The data shown represent a “vigilance mode”
in which the vehicle is listening for a target.

The forward array was pointing down a hallway at a range of 25 ft (1- to
2-s region) listening to a person talking. The person moved to 37 ft and
talked to a person inside an office (2- to 4-s region), and then ran 12 paces
toward the array (4- to 9-s region). Between the sound of the running
person’s footfalls, the spoken words of the people in the offices were
distinguishable over ambient noise.

The spectrogram in figure 16 demonstrates that acoustic detection of
individuals is easy to do while in the vigilance mode and at distances
much greater than shown in this report. At the 10-s point, the vehicle was
turned on and began moving.  Note, however, the high-sound levels of
the vehicle traveling at 69 ft/min, nearly 40 dB above the hallway ambi-
ent. From this spectrogram, it is clearly visible that the vehicle’s self-noise
and the speaker’s voice contain similar frequency components and
temporal (impulsive) structures. This similarity causes voice detection to
be difficult while the vehicle is moving, requiring enhanced directivity to
overcome the noise.

Figure 17 shows three array outputs as the vehicle traveled at 69 ft/min
past an open door of an office in which a person was reading aloud at a
normal speaking level. The person speaking was on the right side of the
vehicle as it passed the doorway, and directly across the hallway, on the
vehicle’s left, was a large noisy computer apparatus just inside the labora-
tory bay, which created acoustic interference noise. The time-series data

Figure 14. Polar and Cartesian directivity curves from density plots (a) microphone only,
(b) single microphone with plastic tubes, and (c) array with plastic tubes.

(a) (b) (c)
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Figure 17. (a) Time-series data and (b) spectograms for vehicle passing open offices with noise and
speech.

from the left array shows consistently high broadband noise, since the
array was constantly pointing in the direction of the noise source
throughout the 4-s run. The data from the right array were able to remove
some of the interfering noise, as seen in the reduced midsection of the
time data and in the lower amplitudes in the spectrogram. The speech
components, as seen primarily below 800 Hz in this data set, are slightly
higher in the SNR as well. The front array has consistent levels through-
out the segment and hears some components of the speech and interfer-
ing noise.

Figure 15. Time
series: talking,
footfalls, and engine.
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Figure 16.
Spectogram: time vs
frequency and
amplitude.
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Voice detection methods are numerous and complex. Sensor systems and
detection algorithms have great difficulty exceeding the sensitivity of the
human ear and the mind’s ability to interpret subtle differences in fre-
quency content, relative amplitudes, phase and time of arrival differences,
as well as accurately filter noisy data to extract speech. Data recorded
during vehicle motion were extremely cluttered with distracting noise but
were discernible with the naked ear when played back through a speaker
(or if listened to remotely during future operations). A combination of
band-pass and band-rejection filtering significantly helped remove
vehicle noise and enhanced the speech SNR so much that speech was
clearly heard. However, an automated detection algorithm in a dynami-
cally changing noise field is not easy. Of primary significance in voice
detection is harmonic component analysis relating to the speech formants.

Shown in figure 18 is a zoomed-in version of the vigilance mode speech
data (vehicle stationary) seen previously. The harmonically related com-
ponents of the spoken words with high SNR are seen in red and orange.
Note also that the harmonics are frequency-modulated depending on
which sounds are uttered. Temporal and spectral cues are currently used
to detect and interpret speech for voice recognition and voice commands.

As depicted in figure 19, the time-series data of the first word (between
0.5 to 0.6 s) in the spectrogram show repeated patterns. By visual inspec-
tion of the waveform in figure 19, approximately 12 bundles of speech can
be seen in the 0.1-s window. In 1 s, or a 120-Hz fundamental, with higher
harmonics also visible, approximately 120 bundles would be derived.
Remember that a 300-Hz high-pass filter in the preamplifier circuit was
intentionally chosen to suppress all lower-frequency vehicle sounds and
nearby traffic, equipment, and ventilation noises. Unfortunately, this filter
also attenuates the fundamental and first harmonic of this particular
speaker’s words. It may be beneficial to lower the high-pass filter corner
to 90 Hz to include most people’s lower fundamental and several higher
harmonics for detection ease. Lower frequencies, by the way, tend to
travel the farthest in atmosphere, and by nature of their larger wave-
lengths, tend to wrap around objects and go through structures better
than higher frequency sounds do, making detections easier.

Much of the dominant vehicle noises were either high levels of broad-
band, tonal, or impulsive in nature, but were not necessarily uniquely
harmonic in structure. Speech, on the other hand, always contains har-
monically related and frequency-shifting components. As shown in figure
20, a harmonic analysis of unfiltered and filtered data was compared for
the presence of harmonics by essentially calculating and summing all the
harmonic values taken from each power spectrum as time progressed. For
each fundamental, the harmonic summation used the center frequency
from each of the adjacent FFT frequency bins between 3 and 300 Hz and
calculated harmonics for the entire bandwidth.
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The top two graphs (fig. 20) represent the time-series representations of
the unfiltered and filtered data, left and right, respectively. Note the
enhanced SNR on the filtered data—it clearly shows the five words
spoken between 118 and 121 s. The filter chosen is a 31-tap band-rejection
filter that eliminates the 800- to 2200-Hz region. We calculated the two
spectrogram representations (fig. 20) using 2048-point Hanning FFTs with
90 percent overlap on data sampled at 12 kHz. The two harmonic repre-
sentations are shown in figure 21. Note how clearly the filtered harmonics
indicate speech; whereas the unfiltered version on the left does not dis-
criminate because of the broadband noise that can contain randomly high
values, which contribute to certain harmonics. These data support the
need for a quieter vehicle but also demonstrate that an automated har-
monic analysis algorithm can detect speech while a vehicle is moving at
top speed.

We have shown that voice is detectable over the vehicle’s dynamic noise
by band-pass filtering and harmonic analysis. It is also detectable by the
human ear listening through headphones, which may become an option
for an operational system. The directivity of the array was acceptable for
this initial vehicle evaluation but must be enhanced to improve localiza-
tion and detection and remove extraneous sounds and vehicle noise. An
automatic gain control circuit should be implemented to lower the gain
during transit and increase sensitivity when the vehicle is paused in the

Figure 18. High-SNR
speech: time (s) vs
frequency (Hz) and
amplitude (dB).

Figure 19. Time-series
data for speech (0.1 s
shown).
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vigilance mode. Better adaptive filtering and speech detection algorithms
also must be implemented. Obviously, we could have used quieter ve-
hicles for this experiment. However, we believe that this unimproved
embodiment might be a “worst-case” experiment to challenge all aspects
of design and signal processing. We were successful. The lessons learned
and the experience gained from these accomplishments will only help to
further acoustic advancements more easily, using improved hardware.

5.2 Speech Detection

Speech can be characterized as a nonstationary process with great varia-
tions in the short-time power. Drago et al (1978), modeled the speech
signal as two nonstationary random processes: one was band-limited
between 300 and 3400 Hz, and the second, primarily because of the
formants in speech and slow time-varying envelope of speech, was
between 0 and 50 Hz. Using this model, they were able to construct
robust speech detection algorithms. However, work by several research-
ers, including William C. Newman (1990), shows that the main formant of
speech is band-limited from 0 to 300 Hz and was the major feature that an
adaptive neural network used for speech detection.

Any speech detection algorithm needs high-noise immunity and end-
point detection of the speech signal, and it must consider the particular

Figure 20.  (a) Time-series data and (b) spectograms for vehicle noise and data, unfiltered and band-
rejected.

Figure 21. Unfiltered,
band-rejected data for
sum of two harmonic
representations.
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characteristics of noise to differentiate speech. Noise in the channel is
primarily because of stationary noise (both vehicle and surrounding
sporadic noise), nonstationary noise (nearby activity, doors opening and
closing), and other sources. Sporadic noise is too complex to contend with
and therefore should not be considered in the algorithm design because
of unwarranted complexity (Taboada et al, 1994; Turk and Pentland,
1991).

We propose a simple speech detection algorithm. The data are band-
limited from 0 to 300 Hz first by the use of a multirate filter architecture,
which ensures low-complexity filters and improved resolution of the
frequency bins. The 0- to 300-Hz region also provides a great deal of noise
immunity and, as stated earlier, is the main formant region. The algo-
rithm then will identify the short time-peak “power” for each 125-ms time
block. This time slice is favorable (Drago, 1978) for simple speech detec-
tion, since shorter slices will cause more interruptions in detection be-
cause of the presence of unvoiced speech sounds or weaker speech
signals. Short-time slices would be required if we intend to perform
speech recognition (Waibel et al, 1989; Makino and Kido, 1996). Also,
longer time slices will tend to average out the dynamic speech feature,
which assists in determining speech onset. The ambient noise will be
determined and a subsequent set of thresholds for use in a band-crossing
algorithm. Speech will be detected if the short time-peak power exceeds a
maximum threshold and the dynamic feature, which is the ratio of the
short time-peak power that (in the previous 125-ms time slice) exhibits a
peak. This dynamic feature exhibits a sharp peak at the onset of speech
and, to a lesser extent, when the speech subsides. Once speech is detected,
the band-limiting thresholds will be used to determine if speech is still
present, and speech will be considered absent only when the total power
falls below the lower threshold for two 125-ms time slices. This algorithm
incorporates several positive features of algorithms mentioned in the
literature of Drago (1978), Newman (1990), and Taboada (1994).
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6. Infrared Camera for Mobile Urban Rover
One aspect of the mobile urban rover (MUR) mission is the detection of
personnel inside and outside buildings of interest. Acoustic and point IR
sensors will be used on the MUR as trigger sensors to indicate possible
human presence. Data from these sensors will give a relative direction of
the detected possible human presence. The robot then needs a sensor
subsystem that is capable of scanning those given areas to confirm the
human presence. Such a sensor subsystem must be capable of providing
high-contrast imagery over a wide range of lighting and obscurant condi-
tions in indoor and outdoor situations. This imagery would then be
processed by the computer located on the MUR to verify the presence of
humans.

6.1 Trade Space

Imaging sensors available for detection and tracking of personnel include
CCD cameras, image intensifiers, and infrared cameras. The MUR imag-
ing sensor has the following requirements:

• Absolute maximum weight of 12 oz, 6 oz desired.

• Low-power consumption (battery-operated).

• Small size, space limited to 3 × 3.5 × 2.5 in.

• Provide images in indoor and outdoor environments.

• Provide images under no-light to bright-light scenarios.

• Depth of field from 5 to 50 ft.

While CCD cameras provide a small, lightweight, and low-power solu-
tion for this application, they are unable to provide proper operation in
low-light and no-light situations. Their operation is further degraded if
smoke or obscurants are present. Examples of images from CCD cameras
can be seen in figure 22 (a) with the room lights on and figure 22 (b) with
the room lights off. With the lights off (fig. 22 (b)), insufficient information
is available to identify the subject in the room. Infrared illumination
sources can be used to enhance the operation of the CCD camera when
room lighting is insufficient. However, these sources have a limited range
of operation. Figure 22 (c) shows an image taken with an IR illuminator
and CCD camera with the IR filter removed. In this case, the illuminator
is a light-emitting diode (LED) based device with a wavelength of 880 nm
that consumes 8 W of input power. Figure 22 (d) is the same image with
the contrast increased by 95 percent. This image shows that some infor-
mation is obtained using the IR illuminator. Inspection of the IR illumi-
nated images by ARL staff indicates that moving object detection and
tracking are possible using this imagery, but that performance (i.e., prob-
ability of detection and probability of false detection) will be reduced
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when compared to the same processing applied to IR imagery. The reduc-
tion in performance is due to low-image contrast as compared to the noise
level in the image. An additional complication with using IR illuminators
is the chance that personnel wearing night-vision equipment may detect
the IR source.

An IR strobe could be used in place of the IR illuminator for low-light
CCD camera operation. Problems associated with the application of an IR
strobe include limited viewing range and limited frame rate.

Image intensifiers could be used to provide imaging capability under
low-light conditions. These cameras require some minimal light to oper-
ate and cannot operate in no-light conditions. In addition, image intensifi-
ers suffer image washout if bright sources, such as windows, skylights, or
distant lights, are present in a darkened room.

IR cameras (FLIR) are imaging devices that produce an image in which
the intensity is directly related to the surface temperature of the object
being viewed. Such an image does not depend on a local light source as
indicated in figure 22 (e) (room lights on) and 22 (f) (room lights off).
These images provide sufficient contrast for detection and tracking of
humans under a wide variety of situations. The range of operation for an
IR camera is limited only by the detector resolution and the optics used.

Figure 22. CCD and
FLIR images of
humans at 19 ft (CCD)
and 14 ft (FLIR):
(a) CCD with lights,
(b) CCD without
lights, (c) CCD with
IR illuminator, IR
filter filter removed;
(d) CCD with IR
illuminator, without
filter, 95 percent
increase in contrast
via software;
(e) FLIR with lights;
and (f) FLIR without
lights.

(a) (c)(b)

(f)(e)(d)
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In addition, these cameras can see through smoke and many other
obscurants in situations that a CCD camera or image intensifier might be
useless.

Note that most IR cameras have a relatively small instantaneous field of
view (FOV), typically 40º to 50º for a near-depth-of-field lens as would be
used in a MUR-type application. This precludes the possibility of using
the IR camera as the only personnel detection sensor. The combination of
wide FOV trigger sensors (acoustic and passive IR) with a limited FOV
confirmation sensor (IR camera) provides a complete set of sensors for the
detection and confirmation of humans.

6.2 System Requirements

The following specifications are given in the selection of a FLIR for the
MUR vehicle:

• Maximum weight of 12 oz, 6 oz desired.

• Maximum package size 3 × 3.5 × 2.5 in.

• FLIR operational with 1 min of power up.

• Less than 8 W.

• Operation over range of 5 to 50 ft.

The following derived specifications are set by mission needs:

• “Uncooled” technology to speed start-up (8- to 12-µm operation).

• Lowest power consumption possible (battery operation).

6.3 FLIR Selection

ARL staff investigated a large number of FLIR cameras for potential
application to the MUR program. Of those systems currently available,
only two almost meet the requirements of this project. All other systems
far exceed the weight, size, and/or start-up times required by the MUR.
The two candidate cameras are the IR Microcam and the Texas Instru-
ments IR camera core used in the VideoTherm 2000. Specifications for
these cameras are listed in table 2. The IR Microcam has been selected as
the FLIR for the MUR as it is the only unit currently available that meets
the minimum height requirements to fit the camera components into the
MUR body. Future FLIR systems will provide substantial reduction in
weight, size, cost, and power consumption as indicated in the next
section.
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6.4 Future FLIR Devices

Several companies are currently developing FLIR camera systems that
will provide reduced weight, size, and power consumption at the cost of
reduced detector array size. Raytheon TI Systems is currently developing
a 160 × 120-pixel microbolometer-based sensor for a Defense Advanced
Research Projects Agency (DARPA) program. In addition, Indigo Systems
is developing a 160 × 120-pixel microbolometer-based sensor for a Com-
munications Electronics Command (CECOM) broad agency announce-
ment (BAA) (preliminary specifications for the Indigo Systems unit are a
D-cell battery, at 0.5 W and weighing 50 g), and Lawrence Livermore
National Laboratory is working on a solid-state IR camera for detecting
moving objects. When available, these systems should provide small and
capable sensors for MUR systems.

Table 2. IR camera specifications.

Specification VideoTherm 2000 IR microCAM

Detector size (w/o lens) 3.1 w × 3.2 l × 0.9 d 2.75 w × 3.19 l × 0.375 d
Driver size 3.1 w × 4.0 l × 0.47 d 5.5 l × 2.7 w × 1.16 h
Lens length 1.454 in. front of lens to detector 2.25 in. front of lens to detector
Total weight (w/o lens) 5 oz (on postal scale) 7.54 oz
Additional weight Lenses, mounting fixtures Lenses, mounting fixtures
Lens weight 0.94 oz 1.27 oz
Spectral range 8–14 µm 8–14 µm
Sensitivity >0.1 °C thermal resolution 0.07 °C NEDT
Frame rate 30 frames/s 60 frames/s
Lens f-number f/0.8 f/1
Hyperfocus lens Yes Yes
Field of view 50° 33°–25°
Operating temperature range –20 to + 55 °C –20 to +60 °C
Settling time 45 s typical 30 s typical
Uniformity method Rotating mechanical shutter Block shutter and zero every

2–3 hr (or 1-oz shutter)
Output signal 8 bits/pixel digital RS-170, 12-bit digital
Blur Yes, recursive filter, can be None (visual check)

removed but image flickers
Availability 10–12 wk worst case 4 mo
Iris Yes, manual adjust No, auto-level
Operating voltage 4.5 to 36 V dc 12 V
Power Max 6 W, typical is 2–3 W Max 7.5 W, 4.3 W typical
Camera parts cost $10,525 $50,000
Lens cost $1.2 k ($1.6 k with iris) Included
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7. Image Processing for Reconnaissance
The robot’s reconnaissance system is required to detect people and traps
and report their locations to the operator. A variety of imaging and
nonimaging sensors are aboard the robot that can perform these tasks.
Each of the robot’s sensors has been selected for the synergistic value that
it adds to the RSTA system. The visible and IR imaging sensors provide
the robot with the sense of vision. With this additional sense, the robot is
more capable of detecting and identifying events and objects of interest.
The imaging sensors can also locate targets more accurately than the
nonimaging sensors. Pictures of significant events and objects can be
provided to the operator for positive identification. There will, however,
be times when the opposing force can be seen but not heard, or vice versa.
Thus, the integration of the imaging and nonimaging sensors will provide
superior reconnaissance performance. This section describes the image
processing algorithms for person detection using the visible and IR
sensors.

There are a number of states of the robot and of objects in the environ-
ment that determine the appropriateness of various reconnaissance
algorithms. Most important is whether or not the robot and targets of
interest are moving. The ability to detect the motion of objects in the
environment is extremely important to the survival of virtually all ani-
mals. The detection of visual motion will play an equally important role
to the microrobot. One of our image-based RSTA algorithms will therefore
detect moving objects. When targets in the scene are not moving, they
must still be detected. Thus, our other image-based RSTA algorithm will
detect people, whether or not they are moving. Because of system con-
straints as described in the next section, the moving object detection
algorithm can only be used when the microrobot is stationary. The person
detection algorithm can be used from either a moving or a stationary
robot.  Table 1 shows which algorithms are applied to which sensors and
whether the robot is stationary or moving.

7.1 Moving Object Detection

Moving objects can be detected in image sequences taken from both
stationary and moving cameras. Detecting moving objects from a moving
camera in an arbitrary environment is challenging, but algorithms have
been developed (Irani and Anandan, 1996; Fejes and Davis, 1997) that
accomplish this goal. We have observed good results when testing the
algorithm of Fejes and Davis (1997) in the robot scenario. Essentially, the
algorithm looks for regions of the normal optic flow field (the component
of optic flow that can be robustly computed) that fail to satisfy a number
of qualitative constraints. Unfortunately, this algorithm is computation-
ally too complex to be implemented in real time on the current robot.
Thus, our moving object detection capability is limited to stationary
cameras—a much simpler problem.
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The moving object detection and tracking algorithm used in this report is
based on a real-time system developed for the Office of the Secretary of
Defense (OSD) Robotics Demonstration I and II programs (Balakirsky et
al, 1993). The system has been extensively tested in indoor and outdoor
environments and it performed excellently. In May 1996, the system was
successfully deployed for an RSTA mission in an unmanned ground
vehicle in field exercises at Ft Hood, TX, by U.S. Army soldiers from the
1st Armored Cavalry Division (David, 1996).

The algorithm performs detection and tracking of moving objects in
visible or IR imagery. Through the use of a stationary camera, moving
objects can be detected by locating the regions of an image sequence that
are changing. Unfortunately, events other than moving objects can cause
changes in the image sequence. Events such as sensor noise (which is
significant with the IR imager), changing scene illumination, and sensor
vibration (caused by, for example, wind or motor vibrations) need to be
accounted for. The system first acquires a single-reference image and then
compares this with all subsequent images. In the system of David (1996),
the reference image was dynamically adapted to represent the static
components of the background. In this system, however, because of the
expected short duration that a moving target detection is to be applied (a
few seconds at a time), a static reference image is adequate. This reference
image will not be able to adapt to changing scene illumination, but for
such short duration interrogations, this is usually not necessary. (If a
sudden change in illumination occurred, such as someone turning on or
off the lights, the system can easily detect this event and acquire a new
reference image.) As each new frame is acquired, the difference between it
and the reference image is computed. The difference image is then
thresholded; a single low threshold is applied to the entire image. A
binary erosion operation over a 3 × 3 neighborhood is applied to this
binary difference image. This step eliminates many spurious detections
because of sensor noise and small camera vibration. Connected regions of
these pixels are then grouped into objects described by a number of size
and shape properties. A simple target tracker is then used to determine
the objects that correspond from one frame to the next. The tracker filters
out objects that do not exhibit consistent motion (i.e., clutter). A map of
the scene in view, if available, is used to estimate the actual size of the
tracked objects, and then simple classification (i.e., animal, person, ve-
hicle) of the objects is performed. Figure 23 illustrates the detection of a
person and his reflection in an IR image sequence.

The following briefly describes the average run-time complexity of the
moving object detection and tracking algorithm. If we assume that 100R
percent (0 ≤ R ≤ 1) of the pixels in the difference image exceeds the detec-
tion threshold, then the approximate number of integer operations re-
quired to execute the above algorithm on a single N × N image is N2 ×
(32R + 25) + 900. The value of R depends on many factors, but for a
typical scene of a small number of moving objects, R = 0.05 is a good
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empirical estimate of this parameter. Then for an input image of size
N = 512, the algorithm requires about 6.97 million integer operations. The
180-MHz MIPS R4650 microprocessor on which these algorithms are to
run has a stated performance of 90 million integers or 60 million floating
point operations a second. Ignoring various system overheads and de-
lays, we can deduce that the above algorithm requires approximately
0.077 s per frame, or equivalently that it can process about 13 frames a
second. A processing rate of three to five frames a second is sufficient for
the current application. Thus, this algorithm easily fits on the targeted
real-time platform. In fact, sufficient CPU time remains for other applica-
tions to run in parallel with the motion tracking algorithms. Also, there
may be times when it is desirable to perform moving object tracking on
multiple imaging sensors simultaneously. This is easily implemented with
these algorithms, up to four cameras at a time (about three frames a
second per camera).

7.2 Person Detection

A requirement of the robot’s RSTA system is to detect people in the
environment. In many situations, the robot’s imaging sensors provide
enough information to accomplish this goal. The moving object detection
and tracking system described in the previous section reliably detects
people who are moving in either visible or IR imagery. What if the people
are not moving? Then that algorithm fails to detect them. A different
algorithm is required that detects stationary people. Since the people are
assumed to be stationary, such an algorithm should require only a single
image to perform this function. The algorithm should handle a wide
variety of poses of people standing, sitting, kneeling, lying, and facing
toward and away from the camera, etc, and it should work for partially
occluded people positioned at a variety of ranges.

The computer vision community has pursued a variety of approaches to
person detection that might be applicable to this type of robotic platform.
One that has received significant attention is human face detection. While
the face is probably the most distinctive part of the human body, most

Figure 23. Detection
of a moving person
and his reflection in
an IR image.
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faces are still geometrically quite similar. This similarity allows algo-
rithms to perform detection via a search for a generic face and then
perform recognition, if necessary, based on particular features of the face.
Some of the techniques used to detect faces include neural nets (Lin et al,
1997; Rowley et al, 1998), eigenfaces (Facia Reco Associates, 1997), and
geometric model matching (Jeng et al, 1998). All these algorithms attempt
to locate the faces of people who are looking approximately toward the
camera. Most of these algorithms fail for off-angle faces, and all fail for
faces that are not visible, such as for a person walking away from the
camera. Still, we tested a number of face detection algorithms that were
designed to work with visible imagery and observed moderate to poor
performance in uncontrolled, cluttered environments: numerous faces
went undetected, many false detections were generated, and at times, the
programs were very slow. There are head detection algorithms (Sirohey,
1993; Birchfield, 1997) that attempt to locate the elliptically shaped human
head and thus may not suffer as many of the problems as face detection
algorithms. However, both face and head detection algorithms have
difficulties detecting people in cluttered environments, especially if the
image of the head is small enough that it loses some of its distinguishing
features. Some other approaches rely on color models of human skin to
detect people (Oliver et al, 1996; Fieguth et al, 1997). These approaches
will not work well in the dimly lit (or dark) environments in which the
robot is expected to operate. Oren et al (1997) have developed a wavelet-
based approach for detecting the full bodies of pedestrians moving
toward or away from a camera. This approach, too, has limited use for
our application. In general, image-based detection of unconstrained
people in unconstrained environments is an extremely difficult task that
requires further research for reliable solutions to be developed. Maybe
some combination of the above techniques might prove fruitful.

After considering the difficulty of detecting stationary people and the
limited computational resources available in our robot, we decided to
investigate a simple technique based on detecting person-shaped blobs in
IR imagery. Although the technique was not expected to solve the prob-
lem, its performance is sufficient to provide useful information in many
situations. Entire (or partial) bodies are detected rather than just heads
and faces. This results in a more reliable system when the people are
distant from the camera. IR rather than visible imagery is used because
people are easily detected in IR imagery as high-intensity blobs (i.e., hot
spots) by simple thresholding techniques. Hot objects in the scene other
than people may also be detected by this simple method, so a means to
discriminate between person-like and non-person-like blobs is necessary.

The steps of the algorithm follow. A single relatively low threshold is
applied uniformly to the entire image. This results in a binary image of
blobs. To smooth the boundaries of the blobs to improve the quality of the
image, shape analysis, erosion, and then dilation are applied to this



35

binary image. This step can also remove many small blobs caused by
noise and small clutter. Connected regions of these pixels are then
grouped into objects with the use of a standard eight-connected compo-
nent algorithm. Next, the perimeter of each blob is traced. Multiple
straight lines are fitted around the perimeter of each blob as it is being
traced. A particular line ends and a new line is started when the current
pixel on the perimeter is greater than some distance (typically one to three
pixels) from the current line (the ratio of the number of high-contrast
perimeter pixels to the total number of perimeter pixels). A perimeter
pixel is deemed high-contrast if the intensity gradient across the edge
exceeds some fixed threshold. This is the same contrast measure as that
used by Birchfield (1997) for human head detection via elliptical contour
fitting.

The above process results in two parameters for each blob: the number of
lines fitted to its perimeter and the perimeter contrast ratio. Simple
pattern classification techniques are then used to classify the blob as
either person or nonperson based on these two parameters. The number-
of-lines parameter describes the shape of the blob. In general, we have
found that the IR signatures of most inanimate objects found in indoor
environments are blobs whose shapes can be approximated by a small
number of straight lines. These are typically objects such as windows,
doorways, corners of hallways, and lights. Sometimes, however, when the
intensity of an object’s image is close to the threshold used to generate the
binary blob image, blobs with contorted shapes are generated because of
small fluctuations in temperature across the surface of the object. In this
case, the contrast across the part of the blob’s perimeter that is a product
of these temperature fluctuations will usually be small, and hence the
blob’s contrast ratio parameter should also be small. The shapes of
people, on the other hand, are usually not well approximated by a small
number of straight lines, and their contrast with the background is usu-
ally quite good. Thus, we expect a good separation of people from
nonpeople in the 2-D parameter space that we have developed.

These ideas have been tested on a variety of IR imagery of people in
different environments, in different poses, and at different ranges. Our
experiments consisted of running approximately 200 IR images through
the above analysis. The blobs generated by each image were manually
classified as either person or nonperson. The parameters of each were
then plotted in a scatter diagram to determine an appropriate discrimina-
tion function. This is illustrated in figure 24. From this scatter diagram, it
is obvious that our metrics do not allow linear separation of people from
nonpeople. However, the piecewise linear discriminant function shown
(by the two dashed lines) allows for a reasonably good separation. (In the
current system, this discriminant function is determined manually.) For
the data analyzed so far, they result in a 0.97 probability of correctly
classifying person blobs as people (probability of detection) and a
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0.02 probability of incorrectly classifying a nonperson blob as a person
(probability of false alarm).  Figure 25 illustrates the results of processing
a typical frame of IR imagery. Depending on various assumptions made
about the imagery being processed, this algorithm produces about one
false alarm for every ten or so images analyzed. By itself, this false alarm
rate is still too high for practical use as a person detector. But, when the
person-detection algorithm is used with other algorithms and sensors,
this algorithm should be quite helpful in separating people from
nonpeople.

The average run-time complexity of this algorithm is now briefly de-
scribed. If we assume that 100S percent (0 ≤ S ≤ 1) of the pixels in the
image exceeds the detection threshold and assume 10 blobs per frame
with an average perimeter length of 240 pixels, then the approximate
number of operations required to execute the above algorithm on a single
N × N image is N2 × (180S + 23) + 120,400 integer operations plus an
additional 0.84 million floating point operations. The value of S depends
on many factors. But for a typical scene, S = 0.07 is a reasonable estimate.
Then, for an input image of size N = 512, the algorithm requires about
9.5 million integers plus 0.84 million floating point operations. Ignoring
various system overheads and delays implies that the above algorithm
executes in approximately 0.11 s per image. Thus, this algorithm too
easily fits on the targeted real-time platform.
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8. Future Directions
The first major direction that will be pursued in the future is to extend the
system from a single urban agent to multiple cooperative urban agents
that use a single operator interface or a mother ship. Multiple urban
agents that operate collaboratively can (1) act as sentries for one another,
(2) extend communications by acting as relays when going deep inside a
building, and (3) act as teams to clear buildings more effectively and
efficiently.

The addition of a mother ship and its processing capabilities will allow
the system to take advantage of ongoing visualization research at ARL
that can be used to enhance the mapping of terrain; weather; nuclear,
biological, and chemical (NBC) environments; and the interiors of the
buildings that the rovers are exploring. These additional computational
capabilities can also greatly enhance the mission planning, autonomous
navigation, and collaborative effort of the system.

For missions that are predominantly urban, the small rovers discussed in
this report are the anticipated platforms because of their more agile
mobility characteristics. When the mission turns to open terrain in the
field, we project that larger rovers with longer ranges and payloads will
be better suited. The mother ship could then deliver either type of rover
and the appropriate RSTA module or a combination of both, depending
on the terrain and mission. An important area of interest with the mother-
ship concept is to develop a docking system for the rovers to dock to the
mother ship. In addition to the physical and electrical connections that
must be made, the mother ship must be able to communicate with the
rovers and the rovers with each other. Therefore, several communication
experiments are planned to test the appropriate communication modes.

Another direction that could be taken is to use the agents in a logistical
role. The agents can be used to replace batteries, exchange sensors, re-
trieve robots, and repair damaged components. Even entire modules can
be replaced. Done autonomously, this logistics agent can greatly extend
the range and life of the rovers as the missions or scenarios change during
an operation.

Another direction that is of interest is to extend the agents’ environment
to the littoral battlespace. By developing sensors to work in the surf zone
and rovers that can transition from the sea to land, stealth, surprise, and
deeper penetration into enemy territory can be obtained and delivered
from a farther distance with torpedo-based capsules to deliver the rovers.

The military applications that we are primarily developing for the rovers
can be easily extended to operations other than war. The rovers can be
used by civilian authorities to search buildings for victims after a disaster
or to search for missing children in the woods and to find chemical spills
quickly and without risk to humans in a city or in the country.
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9. Conclusion
The application of small robots in detecting hazards in urban warfare
scenarios is indeed feasible. The strong trend of sensor miniaturization
and processor efficiency supports this concept. The initial system analysis
and laboratory experimentation of the individual sensors have been
highly supportive of this conclusion. The simple multisensor fusion
approach that is planned is very low risk. The most difficult tasks remain-
ing are to scale and map the image-detection algorithms to the vehicle
processor. However, because of the feasibility of using small robots for
this application, the multiagent collaborative RSTA planning research has
been initiated.
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